OPTICS I: Homework #1

(Due: 2 weeks)

- [2.1] How many 'yellow' lightwaves (λ =580 nm) will fit into a distance in space equal to the thickness of a piece of paper (7.62 mm)? How far will the same number of microwaves (ν =10¹⁰ Hz and ν =3 x 10⁸ m/s) extend?
- [2.16] Given the wavefunctions of Ψ_1 =4·sin2 π (0.2x-3t) and Ψ_2 =4·sin(7x+3.5t), determine in each case the values of (a) frequency, (b) wavelength, (c) period, (d) amplitude, (e) phase velocity, and (f) direction of motion. Time is in seconds and x is in meters.
- [2-22] Write the expression for the wavefunction of a harmonic wave of amplitude 10^3 V/m, period 2.2×10^{-15} s, and speed 3×10^8 m/s. The wave is propagating in the negative x-direction and has a value of 10^3 V/m at t=0 and x=0.
- [2-25] Does the following function, in which A is a constant, $\Psi(y,t)=(y-v\cdot t)\cdot A$ represent a wave? Explain your reasoning.
- [2-30] Create an expression for the profile of a harmonic wave traveling in the z-direction whose magnitude at $z=-\lambda/12$ is 0.866, at $z=+\lambda/6$ is 1/2, and $z=\lambda/4$ is 0.
- [2-35] Consider a lightwave having a phase velocity of 3 x 10^8 m/s and a frequency of 6 x 10^{14} Hz. What is the shortest distance along the wave between any two points that have a phase difference of 30° ? What phase shift occurs at a given point in 10^{-6} s, and how many waves have passed by in that time?
- [2-41] De Broglie's hypothesis states that every particle has associated with it a wavelength given by Plank's constant (h=6.6 x 10⁻³⁴ J·s) divided by the particle's momentum. Compare the wavelength of a 6.0-kg stone moving at a speed of 1.0 m/s with that of light.